mem.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. /*
  2. * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
  3. * All rights reserved.
  4. *
  5. * This source code is licensed under both the BSD-style license (found in the
  6. * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  7. * in the COPYING file in the root directory of this source tree).
  8. * You may select, at your option, one of the above-listed licenses.
  9. */
  10. #ifndef MEM_H_MODULE
  11. #define MEM_H_MODULE
  12. #if defined (__cplusplus)
  13. extern "C" {
  14. #endif
  15. /*-****************************************
  16. * Dependencies
  17. ******************************************/
  18. #include <stddef.h> /* size_t, ptrdiff_t */
  19. #include <string.h> /* memcpy */
  20. /*-****************************************
  21. * Compiler specifics
  22. ******************************************/
  23. #if defined(_MSC_VER) /* Visual Studio */
  24. # include <stdlib.h> /* _byteswap_ulong */
  25. # include <intrin.h> /* _byteswap_* */
  26. #endif
  27. #if defined(__GNUC__)
  28. # define MEM_STATIC static __inline __attribute__((unused))
  29. #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
  30. # define MEM_STATIC static inline
  31. #elif defined(_MSC_VER)
  32. # define MEM_STATIC static __inline
  33. #else
  34. # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
  35. #endif
  36. /* code only tested on 32 and 64 bits systems */
  37. #define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
  38. MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
  39. /*-**************************************************************
  40. * Basic Types
  41. *****************************************************************/
  42. #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
  43. # include <stdint.h>
  44. typedef uint8_t BYTE;
  45. typedef uint16_t U16;
  46. typedef int16_t S16;
  47. typedef uint32_t U32;
  48. typedef int32_t S32;
  49. typedef uint64_t U64;
  50. typedef int64_t S64;
  51. #else
  52. typedef unsigned char BYTE;
  53. typedef unsigned short U16;
  54. typedef signed short S16;
  55. typedef unsigned int U32;
  56. typedef signed int S32;
  57. typedef unsigned long long U64;
  58. typedef signed long long S64;
  59. #endif
  60. /*-**************************************************************
  61. * Memory I/O
  62. *****************************************************************/
  63. /* MEM_FORCE_MEMORY_ACCESS :
  64. * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
  65. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
  66. * The below switch allow to select different access method for improved performance.
  67. * Method 0 (default) : use `memcpy()`. Safe and portable.
  68. * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
  69. * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
  70. * Method 2 : direct access. This method is portable but violate C standard.
  71. * It can generate buggy code on targets depending on alignment.
  72. * In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
  73. * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
  74. * Prefer these methods in priority order (0 > 1 > 2)
  75. */
  76. #ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
  77. # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
  78. # define MEM_FORCE_MEMORY_ACCESS 2
  79. # elif defined(__INTEL_COMPILER) || defined(__GNUC__)
  80. # define MEM_FORCE_MEMORY_ACCESS 1
  81. # endif
  82. #endif
  83. MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
  84. MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
  85. MEM_STATIC unsigned MEM_isLittleEndian(void)
  86. {
  87. const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
  88. return one.c[0];
  89. }
  90. #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
  91. /* violates C standard, by lying on structure alignment.
  92. Only use if no other choice to achieve best performance on target platform */
  93. MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
  94. MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
  95. MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
  96. MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
  97. MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
  98. MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
  99. MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
  100. #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
  101. /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
  102. /* currently only defined for gcc and icc */
  103. #if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
  104. __pragma( pack(push, 1) )
  105. typedef struct { U16 v; } unalign16;
  106. typedef struct { U32 v; } unalign32;
  107. typedef struct { U64 v; } unalign64;
  108. typedef struct { size_t v; } unalignArch;
  109. __pragma( pack(pop) )
  110. #else
  111. typedef struct { U16 v; } __attribute__((packed)) unalign16;
  112. typedef struct { U32 v; } __attribute__((packed)) unalign32;
  113. typedef struct { U64 v; } __attribute__((packed)) unalign64;
  114. typedef struct { size_t v; } __attribute__((packed)) unalignArch;
  115. #endif
  116. MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
  117. MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
  118. MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
  119. MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
  120. MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
  121. MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
  122. MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
  123. #else
  124. /* default method, safe and standard.
  125. can sometimes prove slower */
  126. MEM_STATIC U16 MEM_read16(const void* memPtr)
  127. {
  128. U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
  129. }
  130. MEM_STATIC U32 MEM_read32(const void* memPtr)
  131. {
  132. U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
  133. }
  134. MEM_STATIC U64 MEM_read64(const void* memPtr)
  135. {
  136. U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
  137. }
  138. MEM_STATIC size_t MEM_readST(const void* memPtr)
  139. {
  140. size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
  141. }
  142. MEM_STATIC void MEM_write16(void* memPtr, U16 value)
  143. {
  144. memcpy(memPtr, &value, sizeof(value));
  145. }
  146. MEM_STATIC void MEM_write32(void* memPtr, U32 value)
  147. {
  148. memcpy(memPtr, &value, sizeof(value));
  149. }
  150. MEM_STATIC void MEM_write64(void* memPtr, U64 value)
  151. {
  152. memcpy(memPtr, &value, sizeof(value));
  153. }
  154. #endif /* MEM_FORCE_MEMORY_ACCESS */
  155. MEM_STATIC U32 MEM_swap32(U32 in)
  156. {
  157. #if defined(_MSC_VER) /* Visual Studio */
  158. return _byteswap_ulong(in);
  159. #elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
  160. return __builtin_bswap32(in);
  161. #else
  162. return ((in << 24) & 0xff000000 ) |
  163. ((in << 8) & 0x00ff0000 ) |
  164. ((in >> 8) & 0x0000ff00 ) |
  165. ((in >> 24) & 0x000000ff );
  166. #endif
  167. }
  168. MEM_STATIC U64 MEM_swap64(U64 in)
  169. {
  170. #if defined(_MSC_VER) /* Visual Studio */
  171. return _byteswap_uint64(in);
  172. #elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
  173. return __builtin_bswap64(in);
  174. #else
  175. return ((in << 56) & 0xff00000000000000ULL) |
  176. ((in << 40) & 0x00ff000000000000ULL) |
  177. ((in << 24) & 0x0000ff0000000000ULL) |
  178. ((in << 8) & 0x000000ff00000000ULL) |
  179. ((in >> 8) & 0x00000000ff000000ULL) |
  180. ((in >> 24) & 0x0000000000ff0000ULL) |
  181. ((in >> 40) & 0x000000000000ff00ULL) |
  182. ((in >> 56) & 0x00000000000000ffULL);
  183. #endif
  184. }
  185. MEM_STATIC size_t MEM_swapST(size_t in)
  186. {
  187. if (MEM_32bits())
  188. return (size_t)MEM_swap32((U32)in);
  189. else
  190. return (size_t)MEM_swap64((U64)in);
  191. }
  192. /*=== Little endian r/w ===*/
  193. MEM_STATIC U16 MEM_readLE16(const void* memPtr)
  194. {
  195. if (MEM_isLittleEndian())
  196. return MEM_read16(memPtr);
  197. else {
  198. const BYTE* p = (const BYTE*)memPtr;
  199. return (U16)(p[0] + (p[1]<<8));
  200. }
  201. }
  202. MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
  203. {
  204. if (MEM_isLittleEndian()) {
  205. MEM_write16(memPtr, val);
  206. } else {
  207. BYTE* p = (BYTE*)memPtr;
  208. p[0] = (BYTE)val;
  209. p[1] = (BYTE)(val>>8);
  210. }
  211. }
  212. MEM_STATIC U32 MEM_readLE24(const void* memPtr)
  213. {
  214. return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
  215. }
  216. MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
  217. {
  218. MEM_writeLE16(memPtr, (U16)val);
  219. ((BYTE*)memPtr)[2] = (BYTE)(val>>16);
  220. }
  221. MEM_STATIC U32 MEM_readLE32(const void* memPtr)
  222. {
  223. if (MEM_isLittleEndian())
  224. return MEM_read32(memPtr);
  225. else
  226. return MEM_swap32(MEM_read32(memPtr));
  227. }
  228. MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
  229. {
  230. if (MEM_isLittleEndian())
  231. MEM_write32(memPtr, val32);
  232. else
  233. MEM_write32(memPtr, MEM_swap32(val32));
  234. }
  235. MEM_STATIC U64 MEM_readLE64(const void* memPtr)
  236. {
  237. if (MEM_isLittleEndian())
  238. return MEM_read64(memPtr);
  239. else
  240. return MEM_swap64(MEM_read64(memPtr));
  241. }
  242. MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
  243. {
  244. if (MEM_isLittleEndian())
  245. MEM_write64(memPtr, val64);
  246. else
  247. MEM_write64(memPtr, MEM_swap64(val64));
  248. }
  249. MEM_STATIC size_t MEM_readLEST(const void* memPtr)
  250. {
  251. if (MEM_32bits())
  252. return (size_t)MEM_readLE32(memPtr);
  253. else
  254. return (size_t)MEM_readLE64(memPtr);
  255. }
  256. MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
  257. {
  258. if (MEM_32bits())
  259. MEM_writeLE32(memPtr, (U32)val);
  260. else
  261. MEM_writeLE64(memPtr, (U64)val);
  262. }
  263. /*=== Big endian r/w ===*/
  264. MEM_STATIC U32 MEM_readBE32(const void* memPtr)
  265. {
  266. if (MEM_isLittleEndian())
  267. return MEM_swap32(MEM_read32(memPtr));
  268. else
  269. return MEM_read32(memPtr);
  270. }
  271. MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
  272. {
  273. if (MEM_isLittleEndian())
  274. MEM_write32(memPtr, MEM_swap32(val32));
  275. else
  276. MEM_write32(memPtr, val32);
  277. }
  278. MEM_STATIC U64 MEM_readBE64(const void* memPtr)
  279. {
  280. if (MEM_isLittleEndian())
  281. return MEM_swap64(MEM_read64(memPtr));
  282. else
  283. return MEM_read64(memPtr);
  284. }
  285. MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
  286. {
  287. if (MEM_isLittleEndian())
  288. MEM_write64(memPtr, MEM_swap64(val64));
  289. else
  290. MEM_write64(memPtr, val64);
  291. }
  292. MEM_STATIC size_t MEM_readBEST(const void* memPtr)
  293. {
  294. if (MEM_32bits())
  295. return (size_t)MEM_readBE32(memPtr);
  296. else
  297. return (size_t)MEM_readBE64(memPtr);
  298. }
  299. MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
  300. {
  301. if (MEM_32bits())
  302. MEM_writeBE32(memPtr, (U32)val);
  303. else
  304. MEM_writeBE64(memPtr, (U64)val);
  305. }
  306. #if defined (__cplusplus)
  307. }
  308. #endif
  309. #endif /* MEM_H_MODULE */